

6-port sector antenna, 2x 698–896 and 4x 1695–2360 MHz, 33° HPBW, 2x RETs and 2x SBTs

- Narrow beamwidth capacity antenna for higher level of densification and enhanced data throughput
- Internal SBT on low and high band allow remote RET control from the radio over the RF jumper cable
- Separate RS-485 RET input/output for low and high band
- One LB RET and one HB RET. Both high bands are controlled by one RET to ensure same tilt level for 4x Rx or 4x MIMO

General Specifications

Antenna Type Sector

Band Multiband

Color Light Gray (RAL 7035)

Grounding TypeRF connector body grounded to reflector and mounting bracket

Performance Note Outdoor usage | Wind loading figures are validated by wind tunnel

measurements described in white paper WP-112534-EN

Radome Material Fiberglass, UV resistant

Radiator Material Aluminum | Low loss circuit board

Reflector Material Aluminum

RF Connector Interface 4.3-10 Female

RF Connector Location Bottom

RF Connector Quantity, high band 4
RF Connector Quantity, low band 2
RF Connector Quantity, total 6

Remote Electrical Tilt (RET) Information

RET Interface 8-pin DIN Female | 8-pin DIN Male

RET Interface, quantity 2 female | 2 male

Input Voltage 10-30 Vdc

Internal Bias Tee Port 1 | Port 3

Internal RET High band (1) | Low band (1)

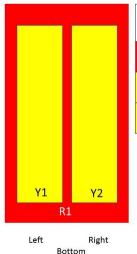
Power Consumption, idle state, maximum 1 W

COMMSCOPE®

Power Consumption, normal conditions, maximum

Protocol 3GPP/AISG 2.0 (Single RET)

Dimensions


Length

Width 640 mm | 25.197 in

Depth 235 mm | 9.252 in

Net Weight, without mounting kit 33 kg | 72.752 lb

Array Layout

Array	Freq (MHz)	Conns	RET (SRET)	AISG RET UID
R1	698-896	1-2	1	ANxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Y1	1695-2360	3-4	2	AN
Y2	1695-2360	5-6	2	ANxxxxxxxxxxxxxxx2

10 W

1219 mm | 47.992 in

(Sizes of colored boxes are not true depictions of array sizes)

Port Configuration

Electrical Specifications

Impedance 50 ohm

Operating Frequency Band 1695 – 2360 MHz | 698 – 896 MHz

Polarization ±45°

Total Input Power, maximum 900 W @ 50 °C

Electrical Specifications

•						
Frequency Band, MHz	698-806	806-896	1695-1880	1850-1990	1920-2200	2300-2360
Gain, dBi	15.7	16.3	18	18.2	18.6	19.4
Beamwidth, Horizontal, degrees	34	30	34	33	31	29
Beamwidth, Vertical, degrees	21.5	19	8.6	8	7.5	6.7
Beam Tilt, degrees	0-18	0-18	0-10	0-10	0-10	0-10
USLS (First Lobe), dB	20	17	15	15	15	15
Front-to-Back Ratio at 180°, dB	33	38	36	37	36	38
Isolation, Cross Polarization, dB	25	25	25	25	25	25
Isolation, Inter-band, dB	28	28	28	28	28	28
VSWR Return loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0

Page 3 of 5

PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-153	-153
Input Power per Port at 50°C,	300	300	250	250	250	200
maximum, watts						

Electrical Specifications, BASTA

Frequency Band, MHz	698-806	806-896	1695-1880	1850-1990	1920-2200	2300-2360
Gain by all Beam Tilts, average, dBi	15.3	16.1	17.4	17.9	18.2	19
Gain by all Beam Tilts Tolerance, dB	±0.4	±0.3	±0.7	±0.5	±0.7	±0.6
Gain by Beam Tilt, average, dBi	0° 15.3 9° 15.4 18° 15.1	0° 16.0 9° 16.1 18° 15.9	0° 16.9 5° 17.4 10° 17.6	0° 17.4 5° 17.9 10° 18.1	0° 17.6 5° 18.3 10° 18.5	0° 18.3 5° 19.1 10° 19.2
Beamwidth, Horizontal Tolerance, degrees	±2.3	±1	±1.5	±1.6	±1.3	±0.9
Beamwidth, Vertical Tolerance, degrees	±1.6	±0.7	±0.5	±0.3	±0.5	±0.3
USLS, beampeak to 20° above beampeak, dB			15	15	15	15
Front-to-Back Total Power at 180° ± 30°, dB	25	26	30	30	29	30
CPR at Boresight, dB	21	21	18	20	19	18
CPR at Sector, dB	13	9	11	11	12	11

Mechanical Specifications

Effective Projective Area (EPA), frontal	0.47 m ² 5.059 ft ²
Effective Projective Area (EPA), lateral	0.15 m ² 1.615 ft ²

Mechanical Tilt Range0°-19°Wind Loading @ Velocity, frontal503.0 N @ 150 km/h (113.1 lbf @ 150 km/h)Wind Loading @ Velocity, lateral155.0 N @ 150 km/h (34.8 lbf @ 150 km/h)Wind Loading @ Velocity, maximum685.0 N @ 150 km/h (154.0 lbf @ 150 km/h)

Wind Loading @ Velocity, rear 728.0 N @ 150 km/h (163.7 lbf @ 150 km/h)

Wind Speed, maximum 241 km/h (150 mph)

Packaging and Weights

 Width, packed
 797 mm | 31.378 in

 Depth, packed
 402 mm | 15.827 in

 Length, packed
 1370 mm | 53.937 in

Weight, gross 50 kg | 110.231 lb

Regulatory Compliance/Certifications

Agency Classification

ISO 9001:2015 Designed, manufactured and/or distributed under this quality management system

Included Products

BSAMNT-3 – Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members.

Kit contains one scissor top bracket set and one bottom bracket set.

* Footnotes

Performance Note Severe environmental conditions may degrade optimum performance

