### Electrical Specifications, BASTA*

<table>
<thead>
<tr>
<th>Frequency Band, MHz</th>
<th>LB</th>
<th>LB</th>
<th>LB</th>
<th>HB</th>
<th>HB</th>
<th>HB</th>
<th>HB-Dual-Beam2</th>
<th>HB-Dual-Beam2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain, dBi</td>
<td>16.2</td>
<td>16.5</td>
<td>16.7</td>
<td>17.5</td>
<td>18.2</td>
<td>18.8</td>
<td>17.2</td>
<td>18.8</td>
</tr>
<tr>
<td>Beam Centers, Horizontal, degrees</td>
<td>±31</td>
<td>±31</td>
<td>±31</td>
<td>±31</td>
<td>±31</td>
<td>±31</td>
<td>±31</td>
<td>±31</td>
</tr>
<tr>
<td>Beamwidth, Horizontal, degrees</td>
<td>69</td>
<td>68</td>
<td>68</td>
<td>62</td>
<td>62</td>
<td>61</td>
<td>36</td>
<td>32</td>
</tr>
<tr>
<td>Beamwidth, Vertical, degrees</td>
<td>10.1</td>
<td>8.9</td>
<td>8.3</td>
<td>7.5</td>
<td>6.7</td>
<td>5.5</td>
<td>7.7</td>
<td>6.9</td>
</tr>
<tr>
<td>Beam Tilt, degrees</td>
<td>0–10</td>
<td>0–10</td>
<td>0–10</td>
<td>0–10</td>
<td>0–10</td>
<td>0–10</td>
<td>0–10</td>
<td>0–10</td>
</tr>
<tr>
<td>USLS (First Lobe), dB</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Null Fill, dB</td>
<td>-22</td>
<td>-22</td>
<td>-22</td>
<td>-22</td>
<td>-22</td>
<td>-22</td>
<td>-22</td>
<td>-22</td>
</tr>
<tr>
<td>Front-to-Back Ratio at 180°, dB</td>
<td>31</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>38</td>
<td>28</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Front-to-Back Total Power at 180° ± 30°, dB</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>29</td>
<td>24</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Isolation, Cross Polarization, dB</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Isolation, Beam to Beam, dB</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>VSWR</td>
<td>Return Loss, dB</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.43</td>
</tr>
<tr>
<td>PIM, 3rd Order, 2 x 20 W, dBc</td>
<td>-150</td>
<td>-150</td>
<td>-150</td>
<td>-150</td>
<td>-150</td>
<td>-150</td>
<td>-150</td>
<td>-150</td>
</tr>
<tr>
<td>Input Power per Port, maximum, watts</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Polarization</td>
<td>±45°</td>
<td>±45°</td>
<td>±45°</td>
<td>±45°</td>
<td>±45°</td>
<td>±45°</td>
<td>±45°</td>
<td>±45°</td>
</tr>
<tr>
<td>Impedance</td>
<td>50 ohm</td>
<td></td>
</tr>
</tbody>
</table>

*CommScope® supports NGMN recommendations on Base Station Antenna Standards (BASTA). To learn more about the benefits of BASTA, download the whitepaper Time to Raise the Bar on BSAs.*

---

10-port sector antenna, 2x 694–960 MHz 65° HPBW, 4x 1695–2690 MHz 65° HPBW and 2x 1695–2180 MHz 2x 33° HPBW, 5x RET with manual override. Bands cascaded SRET

- Integrated Internal Remote Electrical Tilt (RET), with independent control of electrical tilt with manual override on all arrays
- All Internal RET actuators are connected in “Cascaded SRET” configuration

©2020 CommScope, Inc. All rights reserved. All trademarks identified by ® or ™ are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: December 19, 2019
Array Layout

**RVV2NPX310.211R**

<table>
<thead>
<tr>
<th>Array</th>
<th>Freq (MHz)</th>
<th>Comm (SIFF)</th>
<th>RET</th>
<th>AISG RET UID</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>600-900</td>
<td>1-3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B1</td>
<td>1605-2100</td>
<td>3-4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>B2</td>
<td>1695-2100</td>
<td>5-6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Y1</td>
<td>1695-2600</td>
<td>7-8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Y2</td>
<td>1605-2600</td>
<td>9-10</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

View from the front of the antenna

(Sizes of colored boxes are not true depictions of array sizes)

General Specifications
RVV2NPX310.211R

Operating Frequency Band
1695 – 2180 MHz | 1695 – 2690 MHz | 694 – 960 MHz

Antenna Type
Sector
Band
Multiband
Performance Note
Outdoor usage | Wind loading figures are validated by wind tunnel measurements described in white paper WP-112534-EN

Mechanical Specifications

RF Connector Quantity, total
10
RF Connector Quantity, low band
2
RF Connector Quantity, high band
8
RF Connector Interface
7-16 DIN Female
Grounding Type
RF connector inner conductor and body grounded to reflector and mounting bracket
Radiator Material
Low loss circuit board
Radome Material
Fiberglass, UV resistant
Reflector Material
Aluminum
RF Connector Location
Bottom
Wind Loading, frontal
493.0 N @ 150 km/h | 111.1 lbf @ 150 km/h
Wind Loading, lateral
423.0 N @ 150 km/h | 95.1 lbf @ 150 km/h
Wind Loading, maximum
1,044.0 N @ 150 km/h | 234.7 lbf @ 150 km/h
Wind Speed, maximum
241 km/h | 150 mph

Dimensions
Length
2763.5 mm | 108.8 in
Width
350.0 mm | 13.8 in
Depth
208.0 mm | 8.2 in
Net Weight, without mounting kit
46.1 kg | 101.6 lb

Remote Electrical Tilt (RET) Information
Input Voltage
10–30 Vdc
Internal RET
High band (4) | Low band (1)
Power Consumption, idle state, maximum
2 W
Power Consumption, normal conditions, maximum
13 W
Protocol
3GPP/AISG 2.0 (Single RET)
RET Interface
8-pin DIN Female | 8-pin DIN Male
RET Interface, quantity
1 female | 1 male

Packed Dimensions
Length
2985.0 mm | 117.5 in
Width
436.0 mm | 17.2 in
Regulatory Compliance/Certifications

**Agency**
- RoHS 2011/65/EU
- ISO 9001:2015
- China RoHS SJ/T 11364-2014
- CE

**Classification**
- Compliant by Exemption
- Designed, manufactured and/or distributed under this quality management system
- Above Maximum Concentration Value (MCV)
- Compliant with the relevant CE product directives

Included Products

T-029-GL-E — Adjustable Tilt Pipe Mounting Kit for 2.0"-4.5" (60-115mm) OD round members for panel antennas. Includes 2 clamp sets.

* Footnotes

**Performance Note**
Severe environmental conditions may degrade optimum performance