1. General Product Information

The FOSC 400 C5 and D5 closures are combination cable closures and splice organizers, providing mechanical seals and heat-shrinkable sleeves with hot-melt adhesives to environmentally seal fiber cable splice points.

FOSC 400 C5 and D5 closure kits are available in several configurations, as described by the kit naming convention described below.

Cables

The closures support a butt splice configuration with one oval cable entry port and five large round cable entry ports. Chart 1 (below, left) indicates each port’s capacity.

The closures accommodate cable with any combination of the following characteristics:

- Cable Types:
 - Loose buffer tube (stranded-fiber and ribbon)
 - Central core tube (stranded-fiber and ribbon)
 - Slotted Core

- Strength Member/Shield Types:
 - Dual strength member
 - Central member
 - Multiple strength member
 - Unshielded
 - Shielded
 - Double-shielded

- Fiber Types:
 - Single-fiber (250 micron or 900 micron [tight-jacketed]) and Ribbon

Splices

The standard closure kit is supplied with one splice tray. Each FOSC 400 D5 splice tray holds six splice modules; each C5 splice tray holds two modules. The chart below identifies the number and type of splices accommodated by each type of splice module:

<table>
<thead>
<tr>
<th>Splice Modules</th>
<th>Splices Accommodated</th>
<th>FOSC D5 Closure Splices per Tray</th>
<th>Kit</th>
<th>FOSC C5 Closure Splices per Tray</th>
<th>Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM6</td>
<td>Mass fusion</td>
<td>36 D trays</td>
<td>36</td>
<td>12 C Trays</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Single fusion (60mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single mechanical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM8</td>
<td>Single fusion (40mm)</td>
<td>48 D Trays</td>
<td>48</td>
<td>16 C Trays</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Single fusion (60mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single mechanical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM12*</td>
<td>Single fusion (40mm)</td>
<td>72 D Trays</td>
<td>72</td>
<td>24 C Trays</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Single fusion (60mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single mechanical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* For SM12, use CommScope SMOUV splice protectors, or other fusion splice protectors with a maximum recovered diameter of 0.105".

Locations

The closures accommodate unpressurized fiber cable in these locations:

- direct buried
- below grade
- above grade
- pole mount
- aerial

2. Warnings

As with any electrical equipment, various safety precautions should be noted when operating a hot-air gun. Please take note of these warnings:

1. Keep the area clear of all combustible materials and gases, such as gasoline, solvents, and dirty rags. Consult your company-approved practice for procedures to clear and ventilate the work area to avoid the potential for fire and/or explosion.
2. The cleaning tissues provided in the kit are extremely flammable, and should not be exposed to excessive heat or open flame.

3. Do not immerse the hot-air gun in water, as electrical shock could occur.

4. Flash test the closure to no more than 5 psi.

3. Required Tools and Materials

You will need these tools and materials to install the closures:

- 1750 watt AC power source
- FOSC closure work stand (FOSC-ACC-Work Stand – optional)
- Snips and sheath knife
- Buffer tube cutter
- Hot-air gun with tip (FOSC ACC CV 1981)
- Assorted hand tools, such as a hacksaw, screwdrivers, pliers, crescent wrenches, can wrench
- White marking pencil
- Locally approved cleaning solution
- Tape measure
- Clean, dry cloths

4. Standard Components

The following items are included in the fiber optic splice closure kits:

Basic Components:
- base
- splice organizer tray(s) with dust cover
- velcro strap
- dome
- mechanical dome-to-base seal and O-ring
- closure mounting brackets

Cable Termination Components:
- 1 heat-shrinkable cable seal for the oval port
- aluminum tape
- branch-off clip
- abrasive strip
- cleaning tissues
- bond wires and clamps
- 2 distribution funnels and caps
- 2 heat-shrink tubes for use with funnels
- small transportation tubes
- large transportation tubes
- buffer tube identification labels
- tie wraps
- installation instructions

Cable Blocking Components**:
- yellow adhesive rings
- adhesive foam strips
- clear heat-shrinkable tubes
- abrasive strip
- cleaning tissues
- tie wraps
- installation instructions

**Cable blocking components are not included in all kits. Refer to the Naming Convention on page 1 for further details.

5. General Installation Notes

To ensure the proper performance of the heat-shrinkable sleeve, take note of these precautions:

1. Do not install the heat-shrinkable sleeve at temperatures below 1°C (30°F).

2. If the cable is wet, dry the cable before installing the heat-shrinkable sleeve. Steam generated during heating will cause gaps in the adhesive, resulting in a faulty seal.

6. Supplementary Kits

The following chart identifies supplementary kits available for use with the FOSC 400 C5 and D5 closures, and briefly describes their uses.
7. Cable Preparation

Cable core blocking is optional with the closure kit. If cables are to be blocked prior to installation in a splice closure, ignore the instructions in this section and refer to the instructions on cable preparation included with the Cable Blocking Components.

The instructions that follow address the preparation of loose buffer tube and central core tube (stranded fiber and ribbon) cable. Preparation of cable ends and mid-span cables is explained. Refer to the appropriate section:

<table>
<thead>
<tr>
<th>Fiber Type</th>
<th>Cable Type</th>
<th>Cable Ends (See Sect. #)</th>
<th>Midspan Opening (See Sect. #)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stranded (Loose) Fiber</td>
<td>Loose Buffer Tube</td>
<td>7.1</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>Central Core Tube</td>
<td>7.3</td>
<td>7.5</td>
</tr>
<tr>
<td>Ribbon</td>
<td>Loose Buffer Tube</td>
<td>7.6</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>Central Core Tube</td>
<td>7.4</td>
<td>7.5</td>
</tr>
</tbody>
</table>

FOSC 400 C5 Closure Accessory Kits:
- FOSC ACC C Tray-12: C splice tray with two SM6 splice modules
- FOSC ACC C Tray-24: C splice tray with two SM12 splice modules
- FOSC ACC C Basket: Basket for storing slack or express (uncut) loose buffer tubes or ribbons
- FOSC ACC C Tall Basket: Taller version of above basket with more storage space

FOSC 400 D5 Closure Accessory Kits:
- FOSC ACC D Trays 36: D splice tray with six SM6 splice modules (36 splices/tray)
- FOSC ACC D Trays 48: D splice tray with six SM8 splice modules (48 splices/tray)
- FOSC ACC D Trays 72: D splice tray with six SM12 splice modules (72 splices/tray)
- FOSC ACC D Tray Ribn-24: D ribbon splice tray with four SM6 splice modules (Ribbon tray is double thickness of normal tray)
- FOSC ACC D Basket: Basket for storing slack or express (uncut) loose buffer tubes or ribbons
- FOSC ACC D Basket-Tall: Taller version of above basket with more storage space
- FOSC ACC D Ribbon Router: Snaps into baskets; helps route ribbons and transportation tubes onto trays
- FOSC ACC D Pole Mount: For mounting closure to pole or wall
- FOSC ACC Funnel-Ribbon: Funnel and ribbon transportation tubing for routing ribbons from cable to trays

* LBT: 52” goes directly to tray. 90° cut in center makes one small loop in basket and approx. 22” on tray.
** Ribbon: 60” small loop in basket in front of tower and onto the tray. 86” loop to the end of the basket and onto the tray.
*** The Minimum cut length is based on cutting dead-to-the-field side going directly to the tray. The Maximum cut length is based on entry into the basket to tray.
7.1 Loose Buffer Tube Cable End Preparation

To prepare the ends of loose buffer tube cable, follow these steps:

1. Clean the cable and remove the outer cable sheath and shield if present (see chart above for lengths). Remove the aramid and fiber yarns to the ring cut.
2. Cut central member 9” from the ring cut. (Figure 1)
3. Strip away any insulation present on the central member all the way back to the ring cut.
4. If a shield is present in the cable, tab the cable 1” from the ring cut. Crimp the alligator bond clamp to the tab in the sheath.
5. If you are using a B-Bond clamp on double-armored cable, remove a 1” square section of the outer cable sheath around the tab. (Figure 2) Slide the lower plate of the bond clamp under the inner shield so that the stud bolt sticks up through the tab. Place the upper plate of the B-Bond clamp over the bolt. Place a double-eyelet bond wire (available in the FOSC ACC closure bond wire kit) over the bolt. Install the nut on the bolt and tighten it. Optionally, you can cut off the excess stud bolt and file it flush with the nut. (Figure 3)

Important: Do not use braided or stranded ground wire when installing a ground through a port on the FOSC 400 Closures. A solid ground wire is required to prevent a leak path and make a proper seal.

Note: For flexible buffer tube cable, skip steps 6 - 10.
6. Attach cable end to the FOSC closure work stand using a tie wrap as shown. (Figure 4)
7. Carefully ring cut and remove all but three inches of each buffer tube. Clean the remaining buffer tubes, exposed fibers, strength member, and 6” of the cable sheath with a cloth and company-approved cleaning solution. (Figure 5)
8. Install one transportation tube on each buffer tube and slide it down to the sheath ring cut.

Note: Two sizes of transportation tubes are provided for six-fiber and twelve-fiber buffer tubes.
9. Wrap cable with vinyl tape from 1” below the bond clamp to 2” above the ring cut to hold transportation tubes in place.
10. Place an identification marker on each transportation tube. On feeder tubes (in cable), place the markers 6” above the ring cut. On distribution tubes (out cable), place the markers 9” above the ring cut.

7.2 Loose Buffer Tube Cable - Midspan Opening Preparation

1. Clean the cable and remove cable sheath (and shield, if present). For lengths, refer to chart on page 4.
2. Prepare both sides of the midspan opening as described in Section 7.1, but do not remove buffer tubes from fibers that will be looped, uncut, through the closure. Refer to the instructions included with the required basket kit for buffer tube storage procedures.

7.3 Central Core Tube Stranded Fiber Cable End Preparation

The following procedure describes the use of funnels to distribute fibers to the organizer trays. An alternative procedure is to route the entire central core tube to the bottom tray.

1. Clean the cable and remove outer cable sheath. For lengths, refer to chart on page 4.
2. If dual strength members (e.g., LXE) or multiple metallic strength members (e.g., crossply) are present: expose each strength member and cut it off 9” from the ring cut. (Figure 6)
3. If multiple non-metallic strength members (e.g., EST) are present: cut them off at the ring cut.
4. If metal shield is present: Remove all but 1” of the metal shield. (Figure 6) Pry open a 1” tab in the exposed metal shield where the shield overlaps. Crimp the bond clamp onto the edge of the shield.

Important: Do not use braided or stranded ground wire when installing a ground through a port on the FOSC 400 closures. A solid ground wire is required to prevent a leak path and make a proper seal.

5. Attach the cable to the FOSC closure work stand with a tie wrap. (See Figure 4)

6. Cut the central core tube 9” from the ring cut and remove the excess tube. (Fig. 6)

7. Separate the fiber groups and clean the exposed components with a clean cloth and company-approved cleaning solution.

8. Slide the small end of the distributor funnel over the fiber groups, and slide it down over the central core tube.

9. Place one fiber group in each hole of the distributor cap. (Fig. 7)

10. Carefully slide the distributor cap down until it seats in the funnel.

11. Place the fibers from each distributor cap hole into a transportation tube, and slide the tube down into the hole. (Fig. 8)

12. Place an identification marker on each transportation tube. On feeder tubes (in cable), place the markers 6” above the ring cut. On distribution tubes (out cable), place the markers 9” above the ring cut.

13. Place a tie-wrap 1” below the ring cut. Slide the 4”-long black heat-shrinkable tube over the cable components and allow it to rest on the tie wrap. The top of the tube should be roughly 1/2” below the top of the funnel. (Fig. 8)

14. Place a tie wrap around the transportation tubes to hold them in place.

15. With the CV1981 on setting 6, begin shrinking the tube around the top of the funnel. After recovering 1” of tube on funnel, pause for 15 seconds to allow the adhesive to set on the funnel. Complete shrinking the tube. (Fig. 9)

16. After the tube has cooled, remove the tie wraps.

7.4 Central Core Tube Ribbon Fiber Cable End Preparation
(For Installation in the Oval Port)

Important: A metal slack basket (FOSC ACC C or D Basket) and ribbon sized transportation tubing (FOSC ACC TTube Ribn) are required. The FOSC ACC D closure ribbon router tray can be used to help route ribbons and transportation tubes from the slack basket up onto splice organizer trays (used in the D-size basket only).

To prepare the ends of central core tube ribbon cable for installation in the oval port, follow these steps:

1. Perform Steps 1-5 in Section 7.3.

2. Carefully cut the central core tube 9” from the sheath ring cut (Figure 10).

3. Separate the ribbons and clean the exposed components with a clean cloth and company-approved cleaning solution. Stack the ribbons in the order in which they appear in the central core tube. Temporarily wrap a piece of vinyl tape around the ribbons about 1” from the tube to help keep the ribbons stacked.

Note: If the ribbons are not stacked properly, or if they are twisted, light signals may be attenuated.
7.5 Central Core Tube Cable Stranded Fiber and Ribbon- Midspan Opening
(for installation in the Oval Port)

Important: If using ribbon cable, a metal slack basket (FOSC ACC C or D Basket) and ribbon sized transportation tubing (FOSC ACC TTube Ribn) are required. If using stranded fiber cable, expressed fibers are stored on the bottom splice tray and additional trays may be required.

1. Clean the cable and make two ring cuts, centering the point at which the cable will be spliced. Remove the outer cable sheath between the ring cuts, with the length of cable sheath to be removed specified in the chart on page 4.

2. Prepare both sides of the midspan opening as described in Section 7.4

7.6 Loose Buffer Tube Ribbon Cable Ends

Important: A metal slack basket (FOSC ACC C or D Basket) and ribbon sized transportation tubing (FOSC ACC TTube Ribn) are required.

This section pertains to loose buffer tube cable that contains ribbons inside the individual loose buffer tubes. To prepare the cable, follow the instructions in Section 7.1 of this practice, but leave 9" of each loose buffer tube intact beyond the sheath ring cut. Do not install transportation tubes on the loose buffer tube ends.

7.7 Loose Buffer Tube Ribbon Cable Mid-Span Openings

Important: A metal slack basket (FOSC ACC C or D Basket) and ribbon sized transportation tubing (FOSC ACC TTube Ribn) are required.

This section pertains to loose buffer tube cable that contains ribbons inside the individual loose buffer tubes. A mid-span opening of loose buffer tube ribbon cable can only be installed in the oval port. To prepare the cable, open the cable, exposing the loose buffer tubes. (Length of cable to be opened is specified in the chart on page 4.) Prepare as in Section 7.1, removing all but 9" of each buffer tube. Do not cut ribbons or install transportation tubes.

Splice Closure Installation Instructions

Figure 10 indicates that the oval port side of the base is the feeder (or in cable) side of the closure, and the opposite side is the distribution (or out cable) side.

8. Remove Dome/Base Seal

1. Push the handle to the side to release the pin from the notch, then lift the handle. See Figure 11, Step 1.

2. Hook the “feet” of the handle behind the two posts and pry open one half of the clamp. See Figure 11, Steps 2 and 3.

3. Move the handle out of the way and gently tap the other half of the clamp to release it from the dome.

5. Protect dome from dirt during installation. DO NOT SIT ON DOME!

6. Attach the closure base to the FOSC closure work stand using a nut and bolt. (Figure 12)

Note: Position the work stand post on either side of the closure flanges to avoid blocking the port you are working on. (Fig. 13)
9. Install Cables

1. Select the appropriate port to open on the base. These instructions assume that the oval port is selected.

 Note: An oval port seal is included with most C5 and D5 Kits. If you intend to open a round port, you will need one FOSC ACC closure cable seal 1XX kit to seal each opened round port. (See Section 12)

2. Cut the end off the selected port at the ridge with a hacksaw (Fig. 14).

 Important: Slide tubular cable port seal over cable(s) before installing cable(s) in the port! The arrow on the seal should point at the base. (If you forget this step, you may need to order a wraparound oval port sleeve.)

3. Insert the cable(s) through the port. Align each cable so that the sealed end of the cable block (if present) is flush with the inside edge of the opened port. If no cable block is used, align inside edge of port with the end of the vinyl tape wrap (loose buffer tube cable), or the distribution funnel cap (central core tube cable). For cables installed in the oval port, place the distribution (out) cable on top, and the feeder (in) cable on the bottom. (Figure 14)

9.1 Bond and Ground Metal Components

Bonding components are included in the closure kit. The closure supports two methods of external grounding:

- Grounding using the FOSC-ACC-Fiber Ext Grnd Kit (common or isolated grounding) (Figure 15)
- Grounding using two ground feedthrough studs (Figure 16)

 Important: Do not use braided or stranded ground wire when installing a ground through a port on the FOSC 400 closures. A solid ground wire is required to prevent a leak path and make a proper seal.

Various combinations of the procedures described in this section can be used to bond and ground cables and closure components in compliance with company-approved grounding standards.

Note: All steel strength members are bonded in common when captured under the square washer.

Bonding Cables Installed in the Oval Port or Bottom Round Port

Locate the two preinstalled twisted copper bonding cables attached to the tray bracket. One end of each twisted copper bonding cable is attached to the metal tray bracket; the other end is an eyelet to which bond wires from cables will be attached with the supplied nut and bolt assembly. (Figure 17) Each twisted copper bonding cable can accommodate two bond wires from fiber optic cables. Cables are now bonded with the base, which can be externally grounded using feedthrough studs or through external ground wires.

Bonding Cables Installed in the Four Top Round Ports

Insert the “hooked” bond wire eyelet between the bolt head and square washer opposite the port being used. Do not tighten the bolt until strength members are placed under the washer.
9.2 Attach Strength Members

To attach strength members from the cables to the metal tray bracket, follow these steps:

1. Align the strength member with the square washer with which it will be attached to the base. Trim the strength member 1/4" beyond the edge of the square washer.
2. Loosen the square washer and place the strength member(s) underneath it. Tighten the square washer to secure the strength members against the base. (Figure 17)
3. When using the top four round ports, one bolt captures both the bond wire eyelet and the washer. It may be necessary with large central members to place a piece of the central member under each side of the washer to keep the washer level.

9.3 Seal Cables in Oval Port

To seal cables in the oval port, follow these steps:

1. Clean the port and 8" of cable sheath beyond the port edge with the supplied cleaning tissue. (Figure 18)
2. Abrade the port and 8" of cable with the supplied abrasive strip, and remove any abraded material from the port and sheath with a clean, dry cloth.
3. Slide the tubular cable port seal up around the port and cable. Be sure that the inside edge of the tube butts against the closure base. Squeeze the tube down onto the cable and place a white pencil mark on the cable just beyond the end of the tube.
4. Slide the tube back off the port.
5. Wrap one lap of aluminum tape around each cable. The edge of the tape closest to the closure should be 1/2" inside the white mark on the cable as shown in Figure 19.
6. Slide the tube back onto the port, being sure that the edge of the tube butts against the closure base. (Figure 20)
7. Install the branch-off clip as shown. The clip’s base must touch the tube. (Figure 21)
8. Tie the cables together with a tie wrap 1" beyond the end of the tube.
9. Using the CV1981 hot-air gun on setting 10, begin shrinking the tube at the end closest to the base of the closure. Direct the air around the tube until the green paint turns black.
10. Continue heating the remainder of the tube as evenly as possible until it has completely conformed to the cable(s).
11. The seal is completely installed when melted adhesive appears at the cable end of the tube around the branch-off clip, and all green thermochromic paint on the tube has turned black.

Note: Do not overheat the tube or apply excessive heat to plastic parts of closure base.
10. Fiber Organizing and Splicing

10.1 Loose Buffer Tube Cable - Stranded Fiber and Central Core Tube Cable - Stranded Fiber with Funnels

Note: For mid-span openings, expressed fibers and/or buffer tubes are stored in a FOSC ACC C or D Basket.

1. If multiple trays are present, fill the bottom tray first. Use the tray support attached to the bottom of the second tray to hold it out of the way. (Figure 22)

2. Remove the tray cover and route the “feeder” (in) and “distribution” (out) tubes to the appropriate side of the tray (Fig. 23)

3. Place a pen mark on each tube 1/4” beyond the tie-down slots. Use a buffer tube cutter to cut each tube at the mark, and remove the excess tube from each fiber group. (Figure 23)

4. Wrap the end of the cut buffer tube with loose buffer tube (LBT) wrap and secure the tubes to the tray with tie wraps. Tubes will stack under the tie wrap as shown. (Figure 24)

5. Arrange the fiber around the tray for storage. Replace the tray cover.

6. Repeat Steps 1 - 5 for each tray until all fiber has been stored in a tray.

10.2 Central Core Tube Cable - Stranded Fiber (Alternative Method)

If funnels are not used, route both central core tubes directly onto the feeder side of the bottom splice organizer tray. Attach the core tubes with two tie wraps. The unspliced fibers are stored in the bottom tray. Remove the splice modules if necessary. Add inter-tray jumpers as described in Section 10.5 to route the fibers onto upper trays for splicing.

10.3 Central Core Tube and Loose Buffer Tube Cable - Ribbon Fiber

Route central core tubes or buffer tubes into a FOSC ACC basket. Follow instructions included with the FOSC ACC basket to route the ribbons onto upper trays for splicing using ribbon-sized transportation tubes. Ribbons can not be stored on a single tray. Slack has to be pulled back to the basket after splicing. A ribbon tray is available for the FOSC 400 D5 only (FOSC ACC D Tray Ribn-24 kit). Ribbons can be stored on that tray as directed in the instructions included with the tray.

10.4 Add/Remove Splice Trays

Additional splice trays are available in the FOSC ACC C and D tray kits. To add splice trays, put the tray support latch down, hold the tray vertically over the tray holder bracket, and insert the tray hinge into the next unoccupied slot on the tray holder bracket. Put the tray support latch up to lower the tray.

To remove splice trays, reverse this procedure. (Figure 25)
10.5 Add Intertray Jumpers

If fiber placed on one tray is to be spliced with fiber from another tray or basket, you must use an intertray jumper to route the fiber to the desired tray. To create an intertray jumper, follow these steps:

1. Place appropriate intertray identification markers on a transportation tube. (Intertray ID markers are marked “1TO” through “8TO” and “1” through “8”, to indicate which tray the jumper came from and which tray it is going to.)

2. Thread the desired fibers through the marked transportation tube (now called the intertray jumper).

3. Secure one end of the intertray jumper to the originating splice tray with two tie wraps. If you have to remove existing tie wraps, cut and replace them one at a time to avoid moving existing transportation tubes.

4. Guide the jumper through the opening in the tray mounting bracket to the appropriate destination tray and position it in the tray. (Figure 26)

5. With a pen, mark the jumper 1/4” beyond the tie wrap slot. Use the buffer tube cutter to cut the jumper at the mark. Place LBT wrap at the end of the cut tube and secure the jumper to the splice tray with two tie wraps. The fibers may now be stored or spliced.

10.6 Splice Fibers and Store on Trays

Fiber splicing should be done in compliance with company-approved practices. This section outlines some basic splice organizing techniques to be followed.

1. Always begin splicing with the bottom tray. Lift the remaining trays and secure them with the tray support on the underside of the second tray.

2. Remove all stored, unspliced fibers from the tray and clean those that will be spliced. Refer to the splice manufacturer’s instructions for directions on fiber splicing.

3. Store the first completed splice in the top splice slot (the slot farthest from the hinge). Coil the slack loops around the tray in an orderly fashion. The splice modules can be moved or removed to accommodate your splice arrangement; however, the lowest splice module (the one closest to the hinge) cannot be closer to the hinge than its position in Figure 28 indicates for the FOSC 400 D5 closure. No more than six modules can be placed in one splice tray for the FOSC 400 D5 closure; no more than two for the FOSC 400 C5 closure. Splices accommodated by this closure are listed in Section 1.

Note: Protect and strain-relieve fusion splices with fusion splice support sleeves or similar company-approved devices. It is not necessary to use silicone or similar compounds to secure the fibers in the splice holders.

4. Subsequent splices should be stored in the tray from the top slot down. Slack loops can be secured under the tabs around the outside edges of the tray and in the spaces between splice modules. (Figure 27)

5. When you have completed all the splices in the tray, replace the tray cover.

6. Secure all trays to the bottom tray bracket with the Velcro strap as shown. (Figure 28)

Velcro is a trademark of Velcro Industries B.V.
11. Closing and Mounting Closure

11.1 Install Dome

1. If desiccant is to be used (optional - not supplied) install 150 grams of desiccant on top of the uppermost splice organizer tray. Secure it in place with the supplied Velcro fastener strap.

2. Clean the o-ring and the o-ring seating area with a clean, dry cloth. Use clean water or alcohol wipe if necessary. Sealing surfaces must be free of contaminants such as cable grease, cable threads, fibers, dirt, and dust. Inspect for damage. Re-install the o-ring.

3. Mount dome on base, aligning white marks or arrows on dome and base. If desired, use FOSC ACC closure dome holder to hold dome and base together while installing clamp. Install clamp around the base/dome interface, removing dome holder, if used.

4. Position feet of handle in front of the two posts and push down on the handle to pull the two halves of the clamp together. See Figure 29, Steps 1-3.

5. Continue to push handle down until the small pin on the handle snaps into the triangular hole in the clamp. See Figure 29, Step 4.

6. A security lock or tie wrap may be inserted through the round holes in the handle and clamp to lock the closure.

11.2 Test Seals (Kits with Valves Only)

Ensure that all heat-shrinkable parts are cool to the touch. Pressure-test the closure with no more than 5 psi. Thoroughly soap all seals and the valve to check for seal integrity.

Important: After flash testing, bleed all pressure from the D5 closure through the valve.

11.3 Manhole Installation for the FOSC 400 D5 Closure Kit

When the closure has successfully completed testing, it can be mounted for storage. For manhole installations, slide the mounting brackets over a mounting rod or pipe (1-1/4” galvanized water pipe). Mount the brackets to the dome and base as shown. (Figure 30) The mounting rod is not supplied. For aerial applications, use the optional FOSC ACC closure aerial clamps kit. For wall or pole mount applications, use the FOSC ACC D closure pole mount kit.

Note: The FOSC 400 C5 closure requires the FOSC-ACC Wall/Pole Mount kit for storage on a pole or wall. Mounting instructions are included with the kit.

To strand-mount the FOSC 400 C5 closure, use either the FOSC-ACC-UNIV-AERIAL-CLMP or the FOSC-ACC-LASHING STRAPS kit.

To pole or wall-mount the FOSC 400 C5 closure, use the FOSC-ACC Wall/Pole Mount kit.
12. Adding Cables

Adding cables to a sealed closure requires additional cable seal kits. Cable seal kits are available in several configurations, as described by the kit naming convention described below:

13. Removing Cable Seals

Important: When removing cable seals from a closure, first remove the dome and make sure that the cable’s strength members are securely attached to the closure’s base.

1. Re-heat the seal with a hot-air gun.
2. Lightly score the seal with a knife until a split appears in the seal.
3. Apply heat to the split until it runs the length of the seal.
4. Pull the seal away from the cables and closure with a pair of pliers.
5. Any old adhesive remaining on the cables and closure can remain in place.
6. If necessary, cables can be replaced with half-inch plastic rods sold as FOSC ACC closure port rod 0.5 kits.