

PTS1-50, HELIAX® Superflexible High Power, High Temperature 50 Ohm Plenum Rated Coaxial Cable, corrugated copper, 1/4 in, white FR-PVC jacket.

Product Classification

Product Type Coaxial wireless cable

Product Brand HELIAX®
Product Series PTS1-50-P

General Specifications

Product Number419929902/99FlexibilitySuperflexible

Jacket Color White

Performance NoteAttenuation values typical, guaranteed within 5%

Dimensions

 Diameter Over Dielectric
 4.826 mm | 0.19 in

 Diameter Over Jacket
 7.366 mm | 0.29 in

 Inner Conductor OD
 1.88 mm | 0.074 in

 Outer Conductor OD
 6.35 mm | 0.25 in

Nominal Size 1/4 in

Electrical Specifications

3rd Order IMD -107 dBm

3rd Order IMD Test Method Two +43 dBm carriers

Cable Impedance50 ohm ±1 ohm

 $\textbf{Capacitance} \hspace{1.5cm} 80.7 \hspace{.08cm} \text{pF/m} \hspace{.08cm} | \hspace{.08cm} 24.597 \hspace{.08cm} \text{pF/ft}$

dc Resistance, Inner Conductor9.5 ohms/km | 2.896 ohms/kftdc Resistance, Outer Conductor6.562 ohms/km | 2 ohms/kft

dc Test Voltage 1600 V

 $\label{eq:local_$

Insulation Resistance 100000 MOhms-km

ANDREW® an Amphenol company

Jacket Spark Test Voltage (rms) 4000 V

Operating Frequency Band 1 – 20000 MHz

 $\begin{array}{lll} \textbf{Peak Power} & 6.4 \, \text{kW} \\ \textbf{Velocity} & 82 \, \% \\ \end{array}$

VSWR/Return Loss

Frequency Band	VSWR	Return Loss (dB)
680-960 MHz	1.222	20.01
1700-2200 MHz	1.222	20.01
2200-2700 MHz	1.222	20.01

Attenuation

Frequency (MHz)	Attenuation (dB/100 m)	Attenuation (dB/100 ft)
0.5	0.265	0.081
1.0	0.368	0.112
2.0	0.719	0.219
10.0	1.914	0.584
20.0	2.719	0.829
30.0	3.32	1.012
50.0	4.325	1.318
100.0	6.189	1.886
108.0	6.443	1.964
150.0	7.636	2.328
174.0	8.315	2.534
200.0	8.894	2.711
300.0	11.118	3.389
400.0	12.891	3.929
450.0	13.735	4.187
500.0	14.566	4.44
512.0	14.757	4.498
600.0	16.097	4.907
700.0	17.547	5.349
800.0	18.866	5.75
824.0	19.176	5.845
894.0	20.029	6.105

960.0	20.86	6.358
1000.0	21.423	6.53
1250.0	24.265	7.396
1500.0	26.887	8.195
1700.0	28.925	8.817
1800.0	29.885	9.109
2000.0	31.73	9.671
2100.0	32.621	9.943
2200.0	33.529	10.22
2300.0	34.399	10.485
2500.0	36.067	10.993
2700.0	37.899	11.552
3000.0	40.102	12.223
3400.0	43.152	13.153
4000.0	47.429	14.456
5000.0	54.405	16.583
6000.0	60.464	18.43
8000.0	72.435	22.079
8800.0	76.701	23.379
10000.0	82.62	25.183
12000.0	92.938	28.328

Material Specifications

Dielectric Material Foam FEP

Jacket Material Fire retardant PVC

Inner Conductor Material Copper-clad aluminum wire

Outer Conductor Material Corrugated copper

Mechanical Specifications

Minimum Bend Radius, multiple Bends25.4 mm | 1 inMinimum Bend Radius, single Bend25.4 mm | 1 in

Number of Bends, minimum 15 Number of Bends, typical 20

 Tensile Strength
 68 kg | 149.914 lb

 Bending Moment
 0.8 N-m | 7.081 in lb

Flat Plate Crush Strength 1.8 kg/mm | 100.795 lb/in

Environmental Specifications

Operating Temperature $-40 \,^{\circ}\text{C to} + 75 \,^{\circ}\text{C} \, (-40 \,^{\circ}\text{F to} + 167 \,^{\circ}\text{F})$

Storage Temperature $-40 \,^{\circ}\text{C}$ to $+75 \,^{\circ}\text{C}$ ($-40 \,^{\circ}\text{F}$ to $+167 \,^{\circ}\text{F}$)

Attenuation, Ambient Temperature $$68\ ^{\circ}\text{F}\ |\ 20\ ^{\circ}\text{C}$$

Average Power, Ambient Temperature 104 °F | 40 °C

Average Power, Inner Conductor Temperature 392 °F | 200 °C

Fire Retardancy Test Method NFPA 262/CMP | UL 910/CATVP

Packaging and Weights

Cable weight 0.1 kg/m | 0.067 lb/ft

Regulatory Compliance/Certifications

Agency Classification

ISO 9001:2015 Designed, manufactured and/or distributed under this quality management system

