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INTRODUCTION	
High	Dynamic	Range	(HDR)	and	Wide	Color	Gamut	(WCG)	can	have	a	big	positive	impact	
on	a	viewer	by	creating	a	more	convincing	and	compelling	sense	of	light	than	has	ever	
before	been	possible	in	television.	A	recent	scientific	study1	with	professional-quality	
Standard	Dynamic	Range	(SDR)	and	HDR	videos	found	that	viewers	prefer	HDR	over	SDR	
by	a	large	margin.	Moreover,	the	study	also	showed	that	the	margin	of	preference	for	
HDR	increased	with	increasing	peak	luminance.	

What	happens	though	to	a	viewer’s	quality	of	experience	when	pristine	high	quality	
HDR	content	is	compressed	for	distribution?	What	happens	when	HDR	WCG	content	is	
converted	to	SDR	content	to	support	legacy	displays	and	consumer	set-top	boxes?	Do	
distortions	and	compression	artifacts	become	more	noticeable	in	HDR?	Does	processed	
HDR	lose	some	of	its	sparkle	and	become	less	discernible	from	ordinary	SDR?	

Video	quality	is	easy	to	recognize	by	eye,	but	putting	a	number	on	video	quality	is	often	
more	problematic.	For	HDR	&	WCG	the	problem	is	even	harder.	HDR	&	WCG	are	so	
perceptually	potent	because	even	relatively	infrequent	features	such	as	specular	
reflections	and	saturated	colors	can	engage	a	viewer’s	attention	fully.	Yet,	well-known	
video-quality	scoring	methods,	such	as	peak	signal-to-noise	ratio	(PSNR)	and	the	
Structural	SIMilarity	metric2	(SSIM),	could	lead	to	wrong	conclusions	when	applied	to	
the	perceptual	outliers	in	HDR	WCG	video.	Without	good	video-quality	metrics,	cable	
operators	cannot	make	informed	decisions	when	setting	bitrate	and	video-quality	
performance	targets,	nor	when	choosing	technology	partners	for	HDR	WCG	services.		

We	need	a	way	of	quantifying	distortions	introduced	during	HDR	WCG	video	processing	
that	takes	into	account	the	wide	luminance	range	of	HDR	video	as	well	as	the	localized	
highlights,	deep	darks,	and	saturated	colors	that	give	HDR	WCG	its	special	appeal3.	

This	paper	introduces	easy-to-calculate	quantitative	methods	to	provide	cable	operators	
with	video-quality	data	that	can	be	used	to	make	operational,	technological,	and	
product	decisions.	Specifically,	it	presents	methods	to	report	the	level	of	overall	
distortions	in	processed	video	as	well	as	the	specific	distortions	associated	with	
perceptually	important	bright	&	dark	HDR	features	and	textures	with	respect	to	both	
luma	and	chroma	components.	The	paper’s	objective	is	to	show	data	and	analysis	that	
illustrates	how	quantifying	HDR	WCG	video	distortion	can	be	made	accurate,	actionable,	
and	practical,	particularly	when	MSOs	consider	the	various	trade-offs	between	
bandwidth,	technology	options,	and	the	viewer’s	experience.	

Quantifying	HDR	WCG	Video	Quality	&	Distortions	
The	best	way	to	quantify	video	quality	and	viewer	preference	is	to	perform	subjective	
testing	using	established	techniques	and	existing	international	standards	such	as	ITU-R	
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BT.5004	and	ITU-T	P.9105;	but	subjective	testing	is	too	slow	to	be	practical	in	most	
situations.	Instead,	a	number	of	objective	video	quality	assessment	techniques	and	
metrics	have	been	developed	over	the	decades6.	Objective	video	quality	assessment	
relies	on	computer	algorithms	that	can	be	inserted	into	production	and	distribution	
workflows	to	provide	actionable	information.	Some	video	quality	algorithms,	such	as	
PSNR,	are	very	simple,	but	do	not	correlate	well	with	subjective	scores7,8.	Others	are	
very	sophisticated	and	include	models	of	the	human	visual	system.	Such	metrics	do	a	
better	job	of	predicting	subjective	results,	but	can	suffer	from	computational	complexity	
that	limits	their	universal	usefulness9.	Still	some	other	video	quality	metrics,	such	as	
SSIM	and	multiscale	MS-SSIM10,	have	emerged	that	strike	a	good	and	useful	balance	
between	complexity	and	ability	to	predict	human	opinions	with	reasonable	accuracy.	

Another	important	class	of	video	quality	metrics	analyzes	primarily	the	signal	
characteristics	of	images,	though	they	often	also	include	some	aspect	of	the	human	
visual	system.	The	VIF	metric	developed	by	Sheikh	and	Bovik11,	for	example,	
incorporates	the	statistics	of	natural	scenes12.	Nill	and	Bouzas13	developed	an	objective	
video	quality	metric	based	on	the	approximate	invariance	of	the	power	spectra	images.	
Lui	&	Laganiere14,15	developed	a	method	of	using	phase	congruency	to	measure	image	
similarity	related	to	work	by	Kovesi16,17	and	based	on	the	proposal	by	Morrone	&	
Owens18	and	Morrone	&	Burr19	and	that	perceptually	significant	features	such	as	lines	
and	edges	are	the	features	in	an	image	where	the	spatial	frequency	components	come	
into	phase	with	each	other.	More	recently,	Zhang	et	al.20	leveraged	the	concept	of	
phase	congruency	to	develop	FSIM,	a	feature	similarity	metric.	

The	metric	we	propose	in	this	paper	falls	in	with	the	above	group	of	metrics.	It	shares	
the	same	mind	space	in	that	it	references	statistically	expectable	spatial	frequency	
statistics	and	the	significance	of	phase	information	in	an	image;	but	also	it	differs	in	
several	important	aspects.	The	metric	we	propose	does	not	rely	on	phase	congruency	
but	rather	on	a	“Spatial	Detail”	signal	that	can	be	thought	of	as	a	combination	of	the	
true	phase	information	in	an	image	and	the	statistically	unpredictable	information	in	
any	particular	image.	The	“Spatial	Detail”	signal	can	be	thought	of	as	the	condensed	
essence	of	an	image	that	has	the	twin	advantages	of	being	very	easy	to	calculate	and	of	
providing	a	guide	to	the	bright	and	dark	features	and	textures	that	give	HDR	WCG	its	
special	appeal.	

The	Performance	of	Existing	HDR	Video	Quality	Metrics	
It	would	be	simple	if	we	could	use	the	SDR	objective	video	quality	metrics	we	have	come	
to	know	so	well	to	quantify	HDR	video	quality	also.	It	turns	out	that	objective	video	
quality	assessment	for	HDR	is	not	simple.	HDR	video	quality	assessment	needs	either	
new	algorithms	and	metrics	or	a	new	more	perceptually	meaningful	way	of	representing	
image	data.	Perhaps	both	will	be	needed.	



			

Copyright	2016	–	ARRIS	Enterprises	LLC.	All	rights	reserved.	 5	

	

	

Hanhart,	et	al.1,	recently	reported	a	study	of	objective	video	quality	metrics	for	HDR	
images.	They	looked	at	the	accuracy,	monotonicity,	and	consistency	of	a	large	number	
of	both	legacy	SDR	and	newer	HDR-specific	metrics21-24	with	respect	to	each	metric’s	
prediction	of	subjective	video	quality	scores.	They	found	that	metrics	such	as	HDR-VDP-
223	and	HDR-VQM24	that	were	designed	specifically	for	HDR	content	were	best.	

Interestingly,	Hanhart	et	al.	also	found	that	the	performance	of	most	full-reference	
metrics,	including	PSRN	and	SSIM,	was	improved	when	they	were	applied	to	nonlinear	
perceptually	transformed	luminance	data	(PU25	and	PQ26)	instead	of	linear	luminance	
data.	A	similar	conclusion	was	reported	earlier	by	Valenzise	et	al.27	who	used	a	
perceptually	uniform	“PU	transform”	developed	by	Aydin	et	al.25	to	assess	compressed	
HDR	images.	They	found	that	PU-based	PSNR	and	SSIM	performed	as	well	and	
sometimes	better	than	the	more	computationally	demanding	HDR-VDP21	algorithm.	
Another	study	by	Mantel	et	al.28	also	reported	that	perceptual	linearization	influenced	
the	performance	of	objective	metrics,	though	in	this	study	perceptual	linearization	did	
not	always	improve	performance.	Rerabek	et	al..29	extended	the	study	of	objective	
metrics	beyond	still	images	to	HDR	video	sequences	and	found	that	perceptually	
weighted	variants	of	PSNR,	SSIM,	MSE,	and	VIF	correlated	well	with	subjective	scores,	
though	HDR-VDP-2	was	found	to	be	the	best	performer	statistically.	

Balancing	Performance	and	Complexity	
Objective	video	quality	algorithms	should	be	as	simple	as	possible	and	no	simpler.	
Complex	models	of	human	vision	are	important	and	have	their	place,	but	can	also	
become	too	cumbersome	to	be	practically	deployed	in	production	and	distribution	of	
video	programs.	On	the	other	hand,	simpler	fidelity	metrics	such	as	PSNR,	SSIM,	and	
MS-SSIM	might	be	setting	the	bar	too	low	even	with	perceptually	linearized	image	data.	

This	paper	proposes	new	HDR	WCG	video	distortion	metrics	and	an	algorithm	that	is	
intended	to	be	simple,	fast,	and	provide	actionable	data	to	monitor	and	improve	
everyday	video	operations.	

The	video	distortion	assessment	method	we	present	leverages	a	framework	of	
biologically	inspired	image	and	video	processing	developed	by	McCarthy	&	Owen30,31	
based	on	studies	of	the	vertebrate	retina	and	the	expectable	statistics	of	natural	scenes.	
This	bio-inspired	framework	has	been	leveraged	previously	to	develop	a	perceptual	pre-
processor	used	in	profession	broadcast	encoders32	to	make	video	more	compressible	
while	minimizing	introduced	artifacts.	The	details	of	the	theory	are	beyond	the	scope	of	
the	paper,	but	the	applicable	elements	of	the	theory	can	perhaps	best	be	explained	by	
considering	video	in	terms	of	spatial	frequency	(see	Figure	2).		
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CHARACTERISTICS	OF	HDR	WCG	VIDEO	
Test	Sequences	&	Preparation	
In	this	study,	we	used	the	HDR	WCG	test	sequences	shown	in	Figure	1.	These	sequences	
were	created	by	the	“HdM-HDR-2014	Project”33,34	to	provide	professional	quality	
cinematic	wide	gamut	HDR	video	for	the	evaluation	of	tone	mapping	operators	and	HDR	
displays.	All	clips	are	1920x1080p24	and	color	graded	for	Rec.2020	primaries	&	0.005-
4000	cd/m2	luminance.	To	simulate	cable	and	pay	TV	scenarios,	we	converted	the	
original	color	graded	frames	(RGB	48	bits	per	pixel	TIFF	files)	to	YCbCr	v210	format	(4:2:2	
10	bit)	using	the	equations	defined	in	ITU-R	BT.202035.	All	video	processing	and	analysis	
was	performed	using	Matlab36,	ffmpeg37,	and	x26538.	

	
Figure	1	-	HDR	WCG	Test	Sequences	Used	in	this	Study	

Representing	Images	in	Terms	of	Spatial	Frequency	
An	image	is	normally	thought	of	as	a	2-dimensional	array	of	pixels	with	each	pixel	being	
represented	by	red,	green,	and	blue	values	(RGB)	or	a	luma	and	2	chroma	channels	(for	
example,	YUV,	YCbCr,	and	more	recently	ICTCP).	An	image	can	also	be	represented	as	a	
2-dimensional	array	of	spatial-frequency	components	as	illustrated	in	Figure	2.	The	
visual	pixel-based	image	and	the	spatial-frequency	representation	of	the	visual	image	
are	interchangeable	mathematically.	They	have	identical	information,	just	organized	
differently.	

	
Figure	2	-	Representation	of	a	Video	Frame	in	Terms	of	Spatial	Frequency	
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Spatial-frequency	data	can	be	obtained	from	an	image	pixel	array	by	performing	a	2-
dimensional	Fast	Fourier	Transform	(FFT2).	The	pixel	array	can	be	recovered	by	
performing	a	2-dimensional	Inverse	Fast	Fourier	Transform	(IFFT2).	FFT2	and	IFFT2	are	
well	known	signal	processing	operations	that	can	be	calculated	quickly	in	modern	
processors.	

In	the	spatial	frequency	domain,	the	information	in	an	image	is	represented	as	a	2-
dimensional	array	complex	numbers;	or	equivalently	as	the	combination	of	a	real-valued	
2-d	magnitude	spectrum	and	a	real-valued	2-d	phase	spectrum.	(Note	that	the	log	of	the	
magnitude	spectrum	is	shown	in	Figure	2	to	aid	visualization.	The	horizontal	and	vertical	
frequency	axes	are	shown	relative	to	the	corresponding	Nyquist	frequency	(±1).)		

	
Figure	3	-	The	Phase	Spectrum	Typically	Contains	Most	of	the	Details	of	an	Image	

The	phase	spectrum	contains	most	of	the	specific	details	on	the	image,	as	illustrated	in	
Figure	3.	One	way	to	think	of	the	phase	spectrum	is	that	it	provides	information	on	how	
the	various	spatial	frequencies	interact	to	create	the	features	and	details	we	recognize	
in	images18,19.	The	magnitude	spectrum	typically	carries	little	unique	identifying	
information	about	an	image.	Instead,	it	provides	information	on	how	much	of	the	
overall	variation	within	the	visual	(pixel-based)	image	can	be	attributed	to	a	particular	
spatial	frequency.		

Expectable	Statistics	of	Complex	Images	
Images	of	natural	scenes	have	an	interesting	statistical	property:	They	have	spatial-
frequency	magnitude	spectra	that	tend	to	fall	off	with	increasing	spatial	frequency	in	
proportion	to	the	inverse	of	spatial	frequency12.	The	magnitude	spectra	of	individual	
images	can	vary	significantly;	but	as	an	ensemble-average	statistical	expectation,	it	can	
be	said	that	“the	magnitude	spectra	of	images	of	natural	scenes	fall	off	as	one-over-
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spatial-frequency.”	This	statement	applies	to	both	horizontal	and	vertical	spatial	
frequencies.		

	
Figure	4	-	Illustration	of	“One-Over-Spatial-Frequency”	Magnitude	Spectra	

Figure	4	demonstrates	that	individual	frames	of	the	HDR	WCG	test	sequences	used	in	
this	study	generally	adhere	to	the	“one-over-spatial-frequency”	statistical	expectation.	
The	plots	along	the	bottom	of	the	figure	show	the	values	of	the	magnitude	spectrum	
along	the	principal	horizontal	(orange)	and	vertical	(blue)	axes	corresponding	to	the	
horizontal	(orange)	and	vertical	(blue)	arrows	in	the	middle	row	of	the	figure.	

It	is	worth	noting	that	the	expectable	statistics	of	“natural-scene”	images	are	not	limited	
to	pictures	of	grass	and	trees	and	the	like.	Any	visually	complex	image	of	a	3-
dimensional	environment	tends	to	have	the	one-over-frequency	characteristic,	though	
man-made	environments	tend	to	have	stronger	vertical	and	horizontal	bias	than	
unaltered	landscape.	The	one-over-frequency	characteristic	can	also	be	thought	of	as	a	
signature	of	scale-invariance,	which	refers	to	the	way	in	which	small	image	details	and	
large	image	details	are	distributed.	Images	of	text	and	simple	graphics	do	not	tend	to	
have	one-over-frequency	magnitude	spectra.	

PROPOSED	HDR	WCG	VIDEO	DISTORTION	
ALGORITHM		
Spatial	Detail	
HDR	is	all	about	preserving	spatial	detail.	It	is	not	about	brighter	pictures39,40,	or	at	least	
it	should	not	be.	The	wider	luminance	range	encoded	by	HDR	enables	crisp	spatial	detail	
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in	dark	regions	and	bright	highlights	to	play	a	role	in	storytelling	that	is	not	possible	
otherwise.	Similarly,	WCG	is	all	about	enabling	colorfulness	of	spatial	details.		

What	is	“spatial	detail?”	We	know	it	when	we	see	it;	but	if	we	can’t	measure	it	
quantitatively	we	can’t	manage	it	systematically.	

We	propose	that	“spatial	detail”	can	be	quantified	as	the	phase	information	in	an	image	
combined	with	the	statistically	unexpectable	variations	in	the	magnitude	spectrum	
information.	

	
Figure	5	-	Method	of	Calculating	the	Spatial	Detail	Signal	

Our	method	of	creating	a	Spatial	Detail	signal	is	illustrated	in	Figure	5.	First,	the	
magnitude	and	phase	spectra	are	calculated	from	the	image	pixel	array	(only	the	luma	
channel	is	shown	in	Figure	5,	but	the	methodology	may	also	be	applied	to	the	chroma	
channel	or,	alternatively,	to	the	red,	green,	and	blue	channels.)	Next,	a	predetermined	
archetype	of	the	statistically	expectable	one-over-frequency	magnitude	spectrum	is	
divided	into	the	actual	magnitude	spectrum	to	produce	a	statistically	weighted	
magnitude	spectrum.	Third,	the	statistically	weighted	magnitude	spectrum	is	combined	
with	the	actual	phase	spectrum.	Finally,	a	2-dimensional	Inverse	Fast	Fourier	Transform	
is	applied	to	produce	a	pixel	array	that	we	call	the	Spatial	Detail	signal	(see	Figure	6).	
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Figure	6	-	Enlarged	View	of	the	Spatial	Detail	Signal	for	the	Luma	Component	

The	Spatial	Detail	signal	can	be	thought	of	as	the	result	of	a	“whitening”	process.	
However,	a	true	whitening	is	a	signal	processing	operation	that	results	in	exactly	equal	
magnitude	values	at	all	frequencies.	The	phase	image	shown	in	Figure	3	is	the	result	of	a	
true	whitening	process.	It	is	perhaps	more	useful	and	accurate	to	think	of	the	Spatial	
Detail	as	the	result	of	“statistically	expectable	whitening”	that	contains	the	result	of	a	
true	whitening	(the	phase	image)	filtered	by	the	statistically	unexpectable	modulations	
of	the	magnitude	spectrum.	The	distinction	might	seem	nuanced,	yet	the	difference	has	
practical	benefits.	Whereas	the	phase	image	(Figure	3)	is	rough	and	“noisy”	in	a	way	
that	obscures	the	recognizable	details	in	an	image,	the	Spatial	Detail	signal	(Figure	6)	is	a	
smoothly	varying	more	recognizable	dual	of	the	original	image.		

The	Spatial	Detail	signal	may	also	be	thought	of	as	the	result	of	a	true	2-dimensional	
differentiation	of	the	image	pixel	array.	The	Spatial	Detail	signal	is	obtained	by	dividing	
the	actual	magnitude	spectrum	by	a	one-over-frequency	spectrum,	which	is	equivalent	
to	multiplying	the	actual	magnitude	spectrum	by	frequency.	Multiplication	by	frequency	
in	the	frequency	domain	is	equivalent	to	differentiation	in	the	pixel	domain.	

The	differentiation	characteristic	of	the	Spatial	Detail	is	apparent	in	Figure	7.	The	luma	
values	of	the	original	pixel	array	(A)	along	the	midline	(dashed	line)	are	plotted	in	the	
upper	middle	graph	(C).	The	histogram	of	the	all	the	luma	values	of	the	original	pixel	
array	are	plotted	in	the	upper	right	graph	(E).	The	corresponding	Spatial	Detail	signal	(B)	
values	along	the	midline	are	plotted	in	the	lower	middle	graph	(D).	The	histogram	of	the	
all	the	Spatial	Detail	values	are	plotted	in	the	lower	right	graph	(F).	Note	that	the	Spatial	
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Detail	values	tend	to	cluster	near	zero	and	deviate	significantly	from	the	zero	line	only	
where	the	original	luma	values	change	significantly.	

Note	also	that	the	Spatial	Detail	histogram	is	centered	on	zero	and	is	symmetric,	
biphasic,	and	forms	a	compact	peaked	distribution.	Conversely,	the	original	luma	values	
are	spread	out.	The	significance	of	this	distinction	is	that	the	distribution	of	Spatial	
Detail	values	is	preserved	across	images.	The	width	of	the	histogram	changes	
moderately	from	one	video	sequence	to	another	but	retains	the	stereotypical	compact,	
peaked,	biphasic,	and	symmetric	shape.	In	other	words,	the	Spatial	Detail	distribution	is	
statistically	expectable	in	the	same	sense	that	the	one-over-frequency	magnitude	
spectrum	is	statistically	expectable.	The	histogram	of	original	luma	values	is	not	
statistically	expectable:	It	changes	significantly	from	one	video	sequence	to	another	and	
even	between	scenes	of	the	same	program.	

	
Figure	7	-	The	Spatial	Detail	Signal	Distribution	is	Compact,	Symmetric,	&	Biphasic	

Effect	of	HEVC	Compression	on	Spatial	Detail	Correlation	
The	Spatial	Detail	signal	might	be	thought	of	as	the	condensed	essence	of	the	original	
image.	As	such,	we	explored	the	possibility	that	changes	in	the	Spatial	Detail	signal	that	
result	from	compression	might	prove	to	be	a	useful	indicator	of	distortions	and	artifacts.	

We	used	a	10-bit	build	of	x265	(HEVC)	to	compress	each	of	the	test	sequences	at	five	
different	levels	using	the	“constant	quality”	crf	parameter	(10,	15,	20,	25,	and	30).	The	
input	to	x265	in	each	case	was	the	YCbCr	4:2:2	10-bit	version	of	the	original	content.	
The	internal	x265	compressed	pixel	format	was	set	as	YCbCr	4:2:0	10-bit	to	simulate	
cable	&	pay	TV	workflows.	The	resulting	average	bitrates	are	plotted	in	Figure	8.	We	
then	decoded	each	frame	of	each	compressed	bitstream	to	YCbCr	4:2:2	10-bit	for	direct	
comparison	with	the	input.	
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Figure	8	-	Bitrates	for	HEVC-Compressed	Test	Sequences	

We	discovered	that	simple	correlation	analysis	of	the	Spatial	Detail	signals	provides	a	
useful	metric.	The	correlation	of	the	luma	values	of	the	uncompressed	pixel	arrays	
(horizontal	axis)	and	corresponding	compressed	pixel	array	(vertical	axis)	are	shown	in	
the	upper	row	of	Figure	9	for	crf	values	10	(middle)	and	30	(right).	The	analogous	graphs	
on	the	lower	row	are	for	the	values	of	the	corresponding	Spatial	Detail	signals.	If	the	
uncompressed	and	compressed	values	were	identical	the	data	points	would	describe	a	
perfect	line	of	unity	slope.	Differences	between	the	uncompressed	and	compressed	
data	cause	a	scatter	about	the	line.	More	compressed	data	(larger	crf	value)	can	be	
expected	to	result	in	a	larger	amount	of	scatter.	Note	though	that	the	change	in	
scattering	is	more	pronounced	for	the	Spatial	Detail	signal	than	the	original	luma	values.	
More	compression	causes	the	scatter	of	the	Spatial	Detail	values	to	become	more	
globular,	becoming	more	compact	along	the	line	of	perfect	correlation	and	expanding	
perpendicular	to	that	line.	

The	amount	of	scatter	–	the	amount	of	uncorrelation	–	is	quantifiable	by	the	coefficient	
of	determination,	R2	(pronounced	“R-squared”),	which	is	a	statistical	measure	of	the	
amount	of	predictability	of	one	data	set	given	another	data	set.	In	our	case	of	simple	
linear	regression,	R2	is	simply	the	square	of	the	Pearson	correlation	coefficient.	An	R2	
value	of	1	means	perfectly	correlated	and	a	value	of	0	means	perfectly	uncorrelated.	
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Figure	9	-	Correlation	of	Luma	and	Corresponding	Spatial	Detail	Signals	

R2	values	for	all	the	test	sequences	at	every	compression	level	are	plotted	in	Figure	10.	
For	the	original	luma	values	(right-hand	graph),	the	value	of	R2	changes	only	slightly	
between	crf	values	of	10	and	30	even	though	the	bitrate	changes	by	approximately	2	
orders	of	magnitude	(see	Figure	8).	For	the	corresponding	Spatial	Detail	signal,	the	story	
is	very	different	(left-hand	graph).	The	value	of	R2	changes	significantly	over	the	same	
range	of	crf	values	and	corresponding	bitrates.	

	
Figure	10	-	Correlation	Values	for	All	Test	Sequences	&	HEVC	Compression	Levels	

Results	from	well-established	video	quality	metrics	for	the	same	test	sequences	and	
compression	levels	are	plotted	in	Figure	11	to	provide	a	point	of	comparison	and	
reference.	PSNR	displays	good	sensitivity	over	the	entire	range.	MS-SSIM	is	also	
sensitive	to	compression	in	the	range	that	can	be	expected	in	cable	and	pay	TV	service,	
but	only	over	a	very	tiny	restricted	range	of	values	from	0.98	to	1	out	of	a	full	range	of	0	
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to	1.	In	comparison,	R2	values	for	Spatial	Detail	ranges	from	0.4	to	1	out	of	a	full	range	of	
0	to	1.	

	
Figure	11	-	PSNR	and	MS-SSIM	Values	for	All	Test	Sequences	&	Compression	Levels	

Using	Spatial	Detail	to	Probe	Bright	&	Dark	Features	and	
Textures	
The	Spatial	Detail	signal	can	be	decomposed	into	two	subcomponents	(Figure	12)	that	
can	be	used	as	guides	for	selectively	analyzing	perceptually	significant	features	and	
textures.	A	“Sign”	map	(lower	left	in	Figure	12)	of	the	Spatial	Detail	signal	can	be	created	
simply	as	a	binary	image	in	which	each	pixel	is	set	to	0	if	the	corresponding	Spatial	Detail	
pixel	is	negative	and	set	to	1	if	it	is	positive.	The	Sign	map	will	tend	to	have	an	equal	
number	of	0’s	and	1’s	because	of	the	statistically	expectable	symmetric	biphasic	
distribution	of	Spatial	Detail	values.	A	“Significance”	map	(lower	right	in	Figure	12)	can	
be	created	simply	as	the	absolute	value	of	the	Spatial	Detail	signal.	Bright	regions	of	the	
Significance	map	correspond	to	larger	absolute	values	of	the	Spatial	Detail	signal.	Note	
that	the	Significance	map	tends	to	highlight	edges,	borders,	and	other	transitions	which	
is	in-line	with	thinking	of	the	Spatial	Detail	signal	as	a	result	of	a	true	2-dimensional	
spatial	differentiation	as	discussed	above.	

	
Figure	12	-	Decomposition	of	Spatial	Detail	into	a	Sign	map	and	a	Significance	map	
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The	Spatial	Detail	signal	can	also	be	decomposed	as	illustrated	in	Figure	13	to	provide	a	
guide	to	“bright	features”,	“dark	features”,	and	“textures”.	Large	positive	values	of	the	
Spatial	Detail	signal	can	be	used	to	define	the	location	of	bright	features.	Larger	
negative	values	can	be	similarly	used	to	define	the	location	of	dark	features.	The	
remaining	smaller	positive	and	negative	values	of	the	Spatial	Detail	signal	thus	define	
textures.	Absolute	thresholds	could	be	used	but	we	find	it	more	useful	to	use	graded	
weighted	functions	such	as	but	not	limited	to	the	following:	

𝑊"#$%&' 𝑥, 𝑦 =
𝑆 𝑥, 𝑦

𝑆 𝑥, 𝑦 + 𝑆.
𝑆 𝑥, 𝑦 > 0 	

𝑊12#3 𝑥, 𝑦 =
𝑆 𝑥, 𝑦

𝑆 𝑥, 𝑦 + 𝑆.
𝑆 𝑥, 𝑦 < 0 	

𝑊'56'7#5 𝑥, 𝑦 = 1 −𝑊"#$%&' 𝑥, 𝑦 −𝑊12#3 𝑥, 𝑦 	

where	𝑊"#$%&' 𝑥, 𝑦 ,𝑊12#3 𝑥, 𝑦 , and	𝑊'56'7#5 𝑥, 𝑦 	are	pixel	array	weighting	maps	
having	values	between	0	and	1,	and	𝑆 𝑥, 𝑦 	is	the	Spatial	Detail	signal	derived	from	the	
uncompressed	luma	component,	and	𝑆.	is	a	tuning	parameter	that	adjusts	the	boundary	
between	feature	and	texture	(equivalent	to	the	vertical	dashed	lines	in	the	top	center	
graph	of	Figure	13).	

The	image	in	the	middle	of	the	lower	row	of	Figure	13	was	obtained	by	multiplying	each	
red,	green,	and	blue	color	plane	by	𝑊'56'7#5 𝑥, 𝑦 .	The	lower	right	image	illustrating	the	
bright	features	was	created	the	same	way,	but	with	𝑊"#$%&' 𝑥, 𝑦 .	The	lower	left	was	
created	using	𝑊12#3 𝑥, 𝑦 +𝑊"#$%&' 𝑥, 𝑦 	to	visualize	all	features.	(The	weighting	map	
in	each	case	was	calculated	using	the	Spatial	Detail	signal	of	the	luma	component.)	

	
Figure	13	-	Bright	Features,	Dark	Features,	and	Textures	
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The	proportion	of	the	image	that	may	be	described	as	bright	features,	dark	features,	
and	textures	may	be	quantified	using	formulae	of	the	type	below	for	an	NxM	sized	video	
frame:	

𝑃"#$%&' =
?@ABCDE 6,F

G,H
I,J

KL
	;	𝑃12#3 =

?MNAO 6,FG,H
I,J

KL
	;	𝑃'56'7#5 =

?EPIEQAP 6,F
G,H
I,J

KL
	

Textures	account	for	the	majority	of	each	of	the	HDR	WCG	test	sequences	though	
features	play	a	relatively	larger	role	in	for	“smith_hammering”	and	
“carousel_fireworks”,	as	illustrated	in	Figure	14.	

	
Figure	14	-	Relative	Proportions	of	Bright	Features,	Dark	Features,	and	Textures	

Spatial	Detail	Correlation	for	HDR	WCG	Features	and	
Textures	
Bright	and	dark	features	and	textures	are	particularly	important	in	HDR	WCG	video.	
They	are	what	make	HDR	pop.	We	used	correlation	analysis	to	see	if	the	bright	features,	
dark	features,	or	textures	were	systematically	affected	by	HEVC	compression	
preferentially.	

The	resulting	R2	values	are	plotted	in	Figure	15.	We	found	that	HEVC	did	a	particularly	
good	job	of	preserving	both	the	bright	and	dark	features	even	at	compression	levels	
beyond	that	which	would	normally	be	used	in	cable	and	pay	TV	services.	Throughout	the	
range	of	compression	levels	we	tested,	the	R2	values	for	all	features	remained	above	
0.9.	The	results	for	texture	were	not	as	good.	R2	values	for	texture	dropped	below	0.9	
even	for	light	HEVC	compression	thus	indicating	significant	distortion.	These	findings	
were	consistent	across	the	test	sequences	thus	indicating	a	systematic	characteristic	of	
HEVC	compression	rather	than	a	content-dependent	effect.	
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Figure	15	-	Spatial	Detail	Correlation	for	Bright	&	Dark	Features	and	Textures	

Weighted	Mean-Squared	Error	
We	also	investigated	selective	distortion	for	bright	&	dark	features	and	textures	using	
weighted	Mean-Squared	Error	(MSE).	The	weighting	was	achieved	by	multiplying	the	
squared	difference	between	the	uncompressed	and	compressed	video	frame	data	
before	summation	over	all	pixels	(frame	size	of	NxM),	as	illustrated	in	the	equations	
below.	

𝑀𝑆𝐸'T'2U =
𝑌#5W 𝑥, 𝑦 − 𝑌'X' 𝑥, 𝑦

YK,L
6,F

𝑁𝑀 	

𝑀𝑆𝐸'T'2U = 𝑀𝑆𝐸"#$%&' + 𝑀𝑆𝐸12#3 + 𝑀𝑆𝐸'56'7#5		

𝑀𝑆𝐸"#$%&' =
𝑊"#$%&' 𝑥, 𝑦 𝑌#5W 𝑥, 𝑦 − 𝑌'X' 𝑥, 𝑦

YK,L
6,F

𝑁𝑀 	

The	values	of	𝑀𝑆𝐸12#3	and	𝑀𝑆𝐸'56'7#5 	may	be	calculated	in	a	similar	manner.	The	
resulting	weighted	MSE	values	provide	insight	into	the	proportion	of	the	total	MSE	may	
be	attributed	to	bright	&	dark	features	and	textures.	The	same	methodology	may	be	
applied	to	both	luma	and	chroma	MSEs	with	appropriate	scaling	for	the	4:2:2	YCbCr	
format.	

Weighted	MSE	results	for	the	HDR	WCG	test	sequences	that	are	plotted	in	Figure	16	
demonstrate	that	the	majority	of	the	total	MSE	is	attributable	to	the	texture	
component.	We	found	this	conclusion	to	be	consistent	across	all	HDR	WCG	test	
sequences	for	all	compression	levels	we	tested	and	that	the	conclusion	holds	for	luma	
and	chroma.	The	dominance	of	texture	MSE	is	mainly	a	result	of	texture	making	up	the	
largest	proportion	of	video	frames	(see	Figure	14).		
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Figure	16	-	Weighted	MSE	for	Bright	&	Dark	Features	and	Textures	

Squared-Error	Density	
Introduction	of	a	Squared-Error	Density	(SED)	provides	a	means	of	selectively	probing	
distortion	for	features	and	textures	while	accounting	for	each	one’s	relative	prominence	
in	HDR	WCG	video.	SED	may	be	calculated	for	bright	&	dark	features,	and	textures	
according	to	the	following	equations:	

𝑆𝐸𝐷"#$%&' =
L\]@ABCDE
^@ABCDE

;	𝑆𝐸𝐷12#3 =
L\]MNAO
^MNAO

;	𝑆𝐸𝐷'56'7#5 =
L\]EPIEQAP

ÊPIEQAP
	

SED	is	MSE	divided	by	the	corresponding	proportionality	of	feature	or	texture.	SED	thus	
accounts	for	the	fact	that	features	tend	to	be	rarer	the	texture	(see	Figure	14).	SED	may	
be	thought	of	as	providing	a	measure	of	equitability	between	features	and	textures.	For	
example,	SED	can	provide	insight	into	whether	rarer	features	experience	
disproportionate	distortion	compared	to	texture.	

SED	results	for	the	HDR	WCG	test	sequences	are	plotted	in	Figure	17.	We	find	squared-
error	density	for	bright	and	dark	features	is	relatively	more	severe	than	for	textures.	
This	finding	is	consistent	for	all	HDR	WCG	test	sequences	and	compression	levels	we	
tested	and	holds	for	luma	and	chroma.		

	
Figure	17	-	Squared-Error	Density	for	Bright	&	Dark	Features	and	Textures	
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CONCLUSION	
We	have	presented	in	this	paper	a	set	of	video	distortions	metrics	that	might	prove	to	
be	particularly	useful	for	HDR	WCG	video.	The	main	motivating	principle	we	presented	
was	the	“Spatial	Detail”	signal	that	we	used	in	two	ways:	1)	as	a	proxy	for	the	original	
image	data;	and	2)	as	a	guide	to	the	perceptually	important	“features”	and	“textures”	in	
HDR	WCG	video.	

The	Spatial	Detail	signal	is	a	condensed	version	of	the	original	image	that	preserves	the	
recognizable	details	in	an	image	while	discounting	local	luminance.	It	can	be	thought	of	
as	a	true	2-dimensional	differential	of	the	original	image.	It	may	also	be	understood	in	
terms	of	the	phase	information	in	an	image	in	conjunction	with	the	statistically	
unpredictable	information	in	an	image.	From	a	practical	standpoint,	it	doesn’t	really	
matter	which	theory	one	prefers.	Instead,	an	important	key	characteristic	of	the	Spatial	
Detail	signal	is	that	it	has	a	statistically	stable	and	expectable	compact,	peaked,	biphasic,	
and	symmetric	distribution	of	values	that	is	preserved	across	a	wide	range	in	images	and	
video.	Larger	values	–	positive	and	negative	–	form	a	convenient	guide	to	the	kinds	of	
features	people	tend	to	find	significant.	Spatial	Detail	values	nearer	the	zero	midpoint	of	
the	distribution	form	a	convenient	guide	to	image	regions	that	people	would	tend	to	
classify	as	textural.	Such	feature	and	texture	maps	provide	a	stable	framework	in	which	
to	selectively	investigate	the	perceptual	potent	highlights	and	dark	details	that	are	the	
hallmark	of	HDR	WCG	video.		

We	presented	three	HDR	WCG	video	distortion	metrics	in	this	paper:		

1. For	the	first	metric,	we	used	Spatial	Detail	as	a	proxy	for	the	original	image	and	
showed	that	correlation	between	the	Spatial	Detail	signals	of	the	uncompressed	and	
compressed	versions	of	HDR	WCG	video	was	systematically	affected	by	the	
aggressiveness	of	HEVC	compression.	By	combining	Spatial	Detail	correlation	with	
our	feature	and	texture	assignment	methods,	we	showed	that	texture	correlation	
was	impacted	significantly	more	than	feature	correlation.		
Spatial	Detail	correlation	has	several	distinctions	when	compared	to	established	
video	quality	metrics.	It	can	be	used	selectively	on	bright	&	dark	features	and	on	
textures.	Moreover,	Spatial	Detail	values	are	in	the	range	of	0	to	1,	which	is	more	
intuitive	than	the	unbounded	PSNR	scale,	while	being	a	much	more	sensitive	
indicator	than	MS-SSIM	over	the	range	of	compression	levels	typical	of	cable	and	pay	
TV	operations.		

2. For	the	second	metric,	we	used	Spatial	Detail	as	a	guide	for	bright	&	dark	features	
and	texture	to	selectively	quantify	the	MSE	for	each	layer	of	image	detail.	We	
showed	that	texture	is	the	largest	contributor	to	overall	MSE	mainly,	because	texture	
regions	typically	make	up	a	larger	proportion	of	any	image	than	the	rarer	feature	
regions.	
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3. The	third	metric	introduced	a	Squared-Error	Density	(SED)	that	compensates	for	the	
relative	proportions	of	feature	and	texture	in	an	image	so	as	assess	distortions	on	a	
more	equal	scale.	We	found	that	SED	indicates	that	features	experience	
disproportionate	distortion	compared	to	texture.	

	

We	have	deliberately	used	the	term	“video	distortion”	instead	of	“video	quality”	
throughout	this	paper.	The	main	reason	for	doing	so	is	that	the	metrics	we	proposed	
have	not	yet	been	compared	to	subjective	test	scores	and	thus	may	not	yet	be	claimed	
to	be	calibrated	subjective	quality	metrics.	Also,	it	is	not	the	intent	of	this	paper	to	link	
the	metrics	we	propose	to	subjective	assessment;	though	we	may	do	so	in	latter	
publications.	Rather,	our	intent	is	to	provide	easy	to	calculate	metrics	that	we	hope	can	
provide	insight	during	this	critical	period	in	our	industry	as	we	work	through	the	
technical	and	creative	issues	related	to	HDR	and	WCG.	

It	is	also	worth	highlighting	that	the	Spatial	Detail	signal	and	related	metrics	are	easy	to	
calculate	using	modern	signal	processing	techniques	in	modern	processors.	Thus,	we	
believe	the	technical	barrier	to	adoption	of	these	metrics	is	low.		

Our	intent	in	the	paper	is	to	provide	useful	and	easy-to-calculate	metrics	that	have	a	low	
technical	barrier	to	adoption.	The	Spatial	Detail	signal	and	related	metrics	we	propose	
are	easy	enough	to	calculate	that	they	are	candidates	for	real-time	HDR	WCG	video	
assessment	using	modern	signal	processing	techniques	in	modern	processors.	Our	next	
steps	will	be	to	continue	to	assess	the	utility	of	our	HDR	WCG	metrics	with	the	hope	that	
they	will	help	MSOs	navigate	key	technical	and	creative	issues	as	HDR	WCG	video	
programming	emerges	as	the	next	wave	of	great	subscriber	experiences.	
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ABBREVIATIONS	
FFT2	 2-dimensional	Fast	Fourier	Transform	
FSIM	 Feature-Similarity	Index	
HDR	 High	Dynamic	Range	
HEVC	 High	Efficiency	Video	Coding	
ICTCP	 ICTCP	color	space	
IFFT2	 Inverse	2-dimension	Fast	Fourier	Transform	
MSE	 Mean	Square	Error	
MSO	 Multiple	Systems	Operators	
MS-SSIM	 Multiscale	Structural	Similarity	
PQ	 Perceptual	Quantizer	
PSNR	 Peak	Signal-to-Noise	Ratio	
PU	 Perceptually	Uniform	
SDR	 Standard	Dynamic	Range	
SED	 Squared-Error	Density	
SSIM	 Structural	Similarity	
YCbCr	 YCbCr	color	space	
VDP	 Visual	Difference	Predictor	
VIF	 Visual	Information	Fidelity	
VQM	 Video	Quality	Measure	
YUV	 YUV	color	space	
WCG	 Wide	Color	Gamut	
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RELATED	READINGS	
• A	Systematic	Approach	to	Video	Quality	Assessment	and	Bitrate	Planning	–	In	

this	paper,	the	author	presents	a	streamlined	method	of	setting	operational	
video	quality	and	bandwidth	using	either	subjective	or	objective	testing,	using	
individual	golden-eyes	or	focus	groups	of	any	size.	The	data	and	analysis	included	
are	intended	to	aid	in	planning	video	quality	and	bandwidth	resources	across	a	
range	of	service	offerings	from	OTT	through	Ultra	HD.	

• Efficient	Content	Processing	for	Adaptive	Video	Delivery	–	This	paper	provides	
an	in-depth	overview	of	two	emerging	technologies,	dynamic	profile	selection	
and	cooperative	transcoding,	along	with	experimental	data	demonstrating	their	
potential	for	substantially	reducing	content	processing	requirements	for	
multiscreen	video	delivery.		

• Methodologies	for	QoE	Monitoring	of	IP	Video	Services	–	This	paper	discusses	
the	differences	between	QoE	and	QoS	and	between	QoE	and	video	quality	and	
then	compares	different	methodologies	for	video	quality	and	QoE	monitoring.	It	
also	includes	a	review	of	alternatives	for	embedding	QoE	probes	in	the	end-to-
end	IP	Video	architecture	and	their	ability	to	collect	true	and	effective	QoE	
information.	
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