

12-port sector antenna, 4x 698–896 and 8x 1695–2360 MHz, 65° HPBW, 6x RET.

- Features broadband Low Band (698-896 MHz) and High Band (1695-2360 MHz) arrays for 4T4R (4X MIMO) capability for Band 14, AWS, PCS and WCS applications
- Independent tilt for all arrays
- Array configuration provides capability for 4T4R (4x MIMO) on Low band and Dual 4T4R (4x MIMO) on High band
- Optimized SPR performance across all operating bands
- Excellent wind loading characteristics

OBSOLETE

This product was discontinued on: March 31, 2021

Replaced By:

NNH4-65B-R6H4-V1 12-port sector antenna, 4x 698-896 and 8x 1695-2360 MHz, 65° HPBW, 6x RET.

General Specifications

Antenna Type Sector

Band Multiband

Grounding Type RF connector inner conductor and body grounded to reflector and

mounting bracket

Performance Note Outdoor usage | Wind loading figures are validated by wind tunnel

measurements described in white paper WP-112534-EN

Radome Material Fiberglass, UV resistant

Radiator Material Low loss circuit board

Reflector Material Aluminum

RF Connector Interface 4.3-10 Female

RF Connector Location Bottom

RF Connector Quantity, high band 8

RF Connector Quantity, low band 4

RF Connector Quantity, total 12

Remote Electrical Tilt (RET) Information

RET Hardware CommRET v2

COMMSCOPE®

RET Interface 8-pin DIN Female | 8-pin DIN Male

RET Interface, quantity 1 female | 1 male

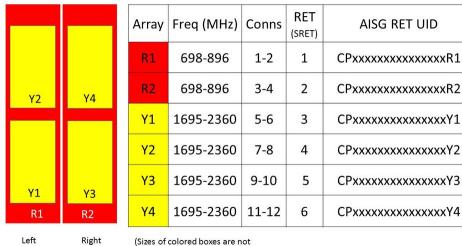
Input Voltage 10–30 Vdc

Internal RET High band (4) | Low band (2)

Power Consumption, idle state, maximum 1 W Power Consumption, normal conditions, maximum 8 W

Protocol 3GPP/AISG 2.0 (Single RET)

Dimensions


 Width
 498 mm | 19.606 in

 Depth
 197 mm | 7.756 in

 Length
 1828 mm | 71.969 in

 Net Weight, without mounting kit
 37.7 kg | 83.114 lb

Array Layout

(Sizes of colored boxes are not true depictions of array sizes)

Port Configuration

Bottom

Electrical Specifications

Impedance 50 ohm

Operating Frequency Band 1695 – 2360 MHz | 698 – 896 MHz

Polarization ±45°

Total Input Power, maximum 900 W @ 50 °C

Electrical Specifications

'						
Frequency Band, MHz	698-806	806-896	1695-1880	1850-1990	1920-2180	2300-2360
Gain, dBi	14.4	15.1	15.8	16.3	16.5	17
Beamwidth, Horizontal, degrees	69	65	58	60	60	58
Beamwidth, Vertical, degrees	12	10.5	11.2	10.4	9.8	8.8
Beam Tilt, degrees	2-14	2-14	2-14	2-14	2-14	2-14
USLS (First Lobe), dB	16	18	18	20	19	17
Front-to-Back Ratio at 180°, dB	28	32	33	38	35	37
Isolation, Cross Polarization, dB	25	25	25	25	25	25
Isolation, Inter-band, dB	25	25	25	25	25	25
VSWR Return loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0

Page 3 of 5

PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-153	-153
Input Power per Port at 50°C,	300	300	250	250	250	200
maximum, watts						

Electrical Specifications, BASTA

Frequency Band, MHz	698-806	806-896	1695-1880	1850-1990	1920-2180	2300-2360
Gain by all Beam Tilts, average, dBi	14	14.7	15.2	16	16.1	16.5
Gain by all Beam Tilts Tolerance, dB	±0.5	±0.6	±0.8	±0.5	±0.4	±0.5
Gain by Beam Tilt, average, dBi	2° 14.1 8° 14.1 14° 13.7	2° 14.8 8° 14.8 14° 14.3	2° 15.2 8° 15.2 14° 15.0	2° 16.0 8° 16.0 14° 15.9	2° 16.1 8° 16.2 14° 16.0	2° 16.5 8° 16.4 14° 16.4
Beamwidth, Horizontal Tolerance, degrees	±3.7	±4.0	±5.7	±1.8	±2.8	±6.7
Beamwidth, Vertical Tolerance, degrees	±0.9	±0.9	±0.8	±0.5	±0.6	±0.4
USLS, beampeak to 20° above beampeak, dB	16	16	18	19	17	16
Front-to-Back Total Power at 180° ± 30°, dB	21	21	28	32	28	28
CPR at Boresight, dB	23	24	15	21	21	17
CPR at Sector, dB	10	5	9	8	7	9

Mechanical Specifications

Effective Projective Area (EPA), frontal	0.64 m ² 6.889 ft ²
Effective Projective Area (EPA), lateral	0.22 m ² 2.368 ft ²

Mechanical Tilt Range 0°-17°

 Wind Loading @ Velocity, frontal
 685.0 N @ 150 km/h (154.0 lbf @ 150 km/h)

 Wind Loading @ Velocity, lateral
 232.0 N @ 150 km/h (52.2 lbf @ 150 km/h)

 Wind Loading @ Velocity, maximum
 889.0 N @ 150 km/h (199.9 lbf @ 150 km/h)

 Wind Loading @ Velocity, rear
 564.0 N @ 150 km/h (126.8 lbf @ 150 km/h)

Wind Speed, maximum 241 km/h (150 mph)

Packaging and Weights

 Width, packed
 608 mm | 23.937 in

 Depth, packed
 352 mm | 13.858 in

 Length, packed
 2010 mm | 79.134 in

COMMSCOPE®

Weight, gross 53 kg | 116.845 lb

Regulatory Compliance/Certifications

Agency Classification

CHINA-ROHS Above maximum concentration value

ISO 9001:2015 Designed, manufactured and/or distributed under this quality management system

ROHS Compliant/Exempted UK-ROHS Compliant/Exempted

Included Products

BSAMNT-3 – Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

* Footnotes

Performance Note Severe environmental conditions may degrade optimum performance

